46 research outputs found

    Parallel QRD-M encoder for multi-user MIMO systems

    No full text
    International audienceIn the context of multi-user precoding, the idea behind vector perturbation (VP) lies in adding an integer vector to the data vector such that the overall transmit power is reduced, where the performance at the users end is consequently improved. In the literature, several techniques have been proposed to nd a quasi-optimum perturbing vector, where this process was represented as an integer lattice search problem. In this paper, we propose a parallel QRD-M encoder (PQRDME) that, besides attaining a quasi-optimum diversity order, leads to tremendous reduction in the latency of the vector perturbation stage. Based on the set grouping, the proposed encoder transforms the full tree-search of the conventional QRDME into partial trees that can be pipelined to increase the encoding throughput. We evaluate the proposed algorithm under several scenarios with both perfect channel state information (PCSI) and imperfect CSI (ICSI) at the transmitter side, where simulation results show robust performance when compared to the optimum encoder

    Hierarchical Grid-Based Pairwise Key Pre-distribution in Wireless Sensor Networks

    Full text link
    The security of wireless sensor networks is an active topic of research where both symmetric and asymmetric key cryptography issues have been studied. Due to their computational feasibility on typical sensor nodes, symmetric key algorithms that use the same key to encrypt and decrypt messages have been intensively studied and perfectly deployed in such environment. Because of the wireless sensor's limited infrastructure, the bottleneck challenge for deploying these algorithms is the key distribution. For the same reason of resources restriction, key distribution mechanisms which are used in traditional wireless networks are not efficient for sensor networks. To overcome the key distribution problem, several key pre-distribution algorithms and techniques that assign keys or keying material for the networks nodes in an offline phase have been introduced recently. In this paper, we introduce a supplemental distribution technique based on the communication pattern and deployment knowledge modeling. Our technique is based on the hierarchical grid deployment. For granting a proportional security level with number of dependent sensors, we use different polynomials in different orders with different weights. In seek of our proposed work's value, we provide a detailed analysis on the used resources, resulting security, resiliency, and connectivity compared with other related works.Comment: 13 pages, 9 figures, 2 tables, to appear in the International Journal of Networks and Securit
    corecore